Viscosity methods for piecewise smooth solutions to scalar conservation laws
نویسندگان
چکیده
منابع مشابه
Viscosity methods for piecewise smooth solutions to scalar conservation laws
It is proved that for scalar conservation laws, if the flux function is strictly convex, and if the entropy solution is piecewise smooth with finitely many discontinuities (which includes initial central rarefaction waves, initial shocks, possible spontaneous formation of shocks in a future time and interactions of all these patterns), then the error of viscosity solution to the inviscid soluti...
متن کاملOn the Piecewise Smooth Solutions to Non-homogeneous Scalar Conservation Laws
We study the structure and smoothness of non-homogeneous convex conservation laws. The question regarding the number of smoothness pieces is addressed. It is shown that under certain conditions on the initial data the entropy solution has only a finite number of discontinuous curves. We also obtain some global estimates on derivatives of the piecewise smooth entropy solution along the generaliz...
متن کاملPointwise Error Estimates for Scalar Conservation Laws with Piecewise Smooth Solutions∗
We introduce a new approach to obtain sharp pointwise error estimates for viscosity approximation (and, in fact, more general approximations) to scalar conservation laws with piecewise smooth solutions. To this end, we derive a transport inequality for an appropriately weighted error function. The key ingredient in our approach is a one-sided interpolation inequality between classical L1 error ...
متن کاملOn the Regularity of Approximate Solutions to Conservation Laws with Piecewise Smooth Solutions
In this paper we address the questions of the convergence rate for approximate solutions to conservation laws with piecewise smooth solutions in a weighted W 1,1 space. Convergence rate for the derivative of the approximate solutions is established under the assumption that a weak pointwise-error estimate is given. In other words, we are able to convert weak pointwise-error estimates to optimal...
متن کاملSpectral Viscosity Approximations to Multidimensional Scalar Conservation Laws
We study the spectral viscosity (SV) method in the context of multidimensional scalar conservation laws with periodic boundary conditions. We show that the spectral viscosity, which is sufficiently small to retain the formal spectral accuracy of the underlying Fourier approximation, is large enough to enforce the correct amount of entropy dissipation (which is otherwise missing in the standard ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1997
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-97-00822-3